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Overdense meteors (electron line density 1016 ≤ q ≤ 1019 
electrons m-1 and diameters dm ≥ 4 mm up to small fireballs) 
are in the size regime of the meteoroids capable of 
generating shockwaves (Fig. 1) during the lower transitional 
flow regimes and prior to their terminal stage in the MLT 
(Mesosphere-Lower Thermosphere) region of the 
atmosphere, at altitudes between 75 km and 100 km [1].  

However, small scale physico-chemical processes  that 
accompany the early evolution of the high T meteor train 
remain poorly understood.  

Primarily it is of interest to understand the mechanism 
behind  subsequent rapid and intense electron removal from 
the postadiabatically expanding meteor train within the first 
0.1 s after its formation (Fig. 2). A comprehensive 
background on the topic can be found in [2].  

We examine subsequent hyperthermal chemistry occurring 
on the early diffusing boundary of the high temperature 
postadiabatically formed meteor train and the shock 
modified ambient atmosphere in the MLT region. 

This study has been motivated by the recent observational 
evidence [3] that suggest slower thermalization times of the 
postadiabatically formed meteor trains which is conducive 
for hyperthermal chemistry. 

1. INTRODUCTION 

A theoretical approach was applied to approximate the 
temperature of the ambient atmosphere near the meteor 
train, which is heated by the passage of the overdense 
meteor cylindrical shock wave. This was accomplished by 
considering the meteor velocity and energy deposition, and 
evaluating the pressure ratios between the ablation 
amplified shock front and the ambient atmosphere (see Fig. 
3 and [2] for further details about this treatment). We have 
modeled hypersonic meteor flow in the MLT region using a 
simplified model without ablation, incorporated into the 
computational fluid dynamics (CFD) software package ANSYS 
Fluent (Figs. 4, 5). The computation was performed using O2 
and N2 as the only major species, at an altitude of 80 km. A 
spherically shaped meteoroid is assumed to have velocity of 
35 km/s (M80km = 124.6). Two meteoroid sizes were 
modeled, dm = 2.5 cm and dm = 10 cm. Further details about 
the model are given in [2]. 

2. THEORETICAL & MODELING APPROACH 

3. RESULTS 

4. DISCUSSION AND CONCLUSION 

The cylindrical shock waves produced by overdense meteors 
are strong enough to heat the ambient atmosphere to 
temperatures of ~6,000 K in the near field and subsequently 
dissociate oxygen and minor species such as O3, but 
insufficient to dissociate N2. This substantially alters the 
considerations of the chemical processes taking place at the 
meteor train boundary. We demonstrate that ambient O2 

which survives the cylindrical shockwave, along with small 
quantities of O2 that originates from the shock dissociation 
of O3, participate primarily in high temperature oxidation of 
meteoric metal ions, forming metal ion oxide. For the case of 
overdense meteor trains, the subsequently formed meteoric 
metal oxide ions are predominantly responsible for the initial 
intense and short lasting electron removal from the 
boundary of the expanding meteor train, through a process 
of fast temperature independent dissociative recombination. 
This altitude dependent process is typically completed within 
0.1 - 0.3 s, which in good agreement with the results 
suggesting substantially slower cooling of meteor wakes [3]. 
The rate of this process is also strongly dependent on the 
second Damköhler number. The potential implications of 
results presented here, toward the behavior of strong 
underdense radio meteors, should be further investigated. 
The full scope of implications of this work is presented in [2]. 
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ON THE MECHANISM OF EARLY RAPID REMOVAL OF ELECRONS FROM 
POSTADIABATICALLY EXPANDING OVERDENSE METEOR TRAINS 

Figure 2: Schematic depiction of an overdense meteor's early evolution, in which three distinct stages can be recognized. In the first 

stage, the ablating meteoroid with the shock front in front sweeps the cylindrical volume of ambient atmosphere (depicted by the small 

gray circle), ionizing and dissociating atmospheric gasses. This stage also coincides with the cylindrical shock wave expanding radially 

outward, perpendicular to the meteor axis of propagation, with enough energy deposited within R0 to dissociate O2 and O3 in the 

ambient atmosphere, but not enough for N2 dissociation (see [2] for the extended discussion). In stage two, the adiabatically formed 

meteor train (which can be approximated as quasineutral plasma with the Gaussian radial electron distribution), begins to expand 

under ambipolar diffusion and thermalizes. This stage coincides with formation of metal ion oxides which takes place and is 

appreciable between approximately (3,000 – 1,500 K) at the boundary region of the diffusing trail. In this reaction, an ablated meteoric 

metal ion will react in a thermally driven reaction with the shock-dissociated product of ozone (O2 in ground and excited states). In the 

stage three, in the almost thermalized train, the newly formed metal ion oxide will consume electrons rapidly by temperature 

independent dissociative recombination (see [2] for discussion). 

Figure 1: Schematics of the meteor shock wave(s), flow fields and near wake. 

The meteoroid is considered as a blunt body (with the spherical shape) 

propagating at hypersonic velocity. (1) Bow (cylindrical) shock wave front; (2) 

The “ballistic” shock front; (3) Sonic region; (4) Boundary layer; (5) Stagnation 

point; (6) Turbulent region (in some older literature, this is referred as the dead 

water region); (7) Meteoroid; (8) The neck and recompression region; (9) The 

‘free’ shear layer; (10) The recompression vapour (or a true cylindrical) shock 

wave front; (11) The region of turbulent vapour flow and adiabatic expansion. 

Note that small circles with positive and negative signs indicate regions affected 

by the presence of ions and electrons respectively. The diagram is only for the 

illustrative purpose and is not to scale. 

Figure 5: The temperature distribution around the (a) 2.5 cm and (b) 10 cm 

meteoroid. Note that (a) and (b) have different axes scaling. 

Figure 4: The mass fraction of O2 as a function of radial distance 

from the propagation axis of the (a) 2.5 cm and (b) 10 cm meteoroid. 

The top boundary (“white space” in the plot) represents a numerical 

boundary condition without any physical significance (it is set up to 

be far enough away from the body (meteoroid), such that the 

influence of the body (meteoroid) no longer has any effect. Note that 

(a) and (b) have different axes scaling. The colour scheme is 

represented in log scale.  

Figure 3: (a) Plotted are the initial radius (r0) of a typical bright overdense meteor (from [4]) and the radius of the meteor (rm) trail after t 

= 0.3 s. These are compared to R0 as a function of constant energy deposition (see eq (1) in [2]) of 100 J/m and 1000 J/m for altitudes 

from 80 km to 100 km. For rm at 0.3 s, we applied the geometrically averaged hot plasma and ambient atmosphere ambipolar diffusion 

coefficients as per [5]. (b) The initial radius r0, plotted along rm at t = 0.3 s [6]. Here, shown is the comparison between rm as calculated 

in panel (a), and rm as calculated using the Massey’s formula for the theoretical diffusion coefficient.   
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