
The integration and test runs

The integration goes by the well-known and simple way: in each -th step we take the (i-1)-th vector
of the velocity, calculate the components of drag force by the drag law as by formula (3). After this,
we can calculate the components of acceleration. In our approximation the temporary change of the
meteoroid mass (and thus, the change of the cross section area of its body) is not yet taken into
account, as well as the possible fragmentation on the course of time. We consider the body as a
constant mass and radius object.

, , (5)

is the gravitational acceleration at the actual height, is the density of the meteoroid (for stone
meteoroids we accepted 3,4 g/cm ). With these values, we can determine the velocity-, and spatial
movement change of the body during the applied t step. The density of the air is recalculated at
each integration steps, while the temperature (which is needed for calculating the kinematic viscosity
and the Reynolds number) is taken from world meteorological databases for the given date. The
calculation is automatically stopped when the coordinate achieve . We are especially
interested about the final (x,y) coordinates, since they directly give us the most probable falling site.The total time spent until
the fall is also an interesting data. Later we added an automatical change of the initial size of the meteoroid body, and
simulating the possible blow up, the code can add occasional side speed components to the initial velocity vector. Thus, we
can study the most probable thrown fields, and thus, support the field searches in real cases.

The very first tests contained the verification with the analytically solvable “free-fall” case, in a homogeneous atmosphere.
Moreover, an existing similar software was also available for comparison with our detailed results (Csizmadia, 2016). A few
comparison results can be found on . Our code runs were carried with two different calculations.

After the successful tests, the first real case of the application of our new code were the so-called Easter Bolide of 2015,
observed over Hungary on 2015/04/06, 17:31 UTC. The final step for achieving a more realistic situation were the
consideration of the horizontal wind speeds (they modify the and components of the vrel). There are a few sources
containing such data, with a given time- and spatial resolution. We used the archival ECMWF profiles, for supplying which we
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Introduction, motivation

The need of better understanding of the meteor flight in the atmosphere, and the subsequent probable fall-
generating blowing bolides over Hungary in the last few years motivated us to build an own integrator code
for solving the “dark flight” part of the meteor phenomena. In this poster we present the basics of our model,
and show a few of its test results with and without real wind data. In addition, we show the very first real
application to the so-called “Easter Bolid of 2015”. The field searches has already been started on the
resulted thrown fields areas, but no meteorite was found as yet.

For the sake of more a clearer overview (and better understanding) on the kinematics of the meteoroid body
in the atmosphere - we choosed first plain Earth model with planparallel atmosphere. The selected Cartesian
coordinate system and the
initial configuration can be
seen on

The meteoroid body is now
described as homogeneous
sphere, with a radius of ,
and density of .

The direction of the initial
velocity vector is given by
two angles: is the angle
with the axis (zenithal
distance), and the azimuth
angle (considered by the
usual manner, as anywhere
in the spherical astronomy).
The components of the
initial velocity vector are:

, , ; (1)

while the only components of the initial acceleration are the . The value of the gravitational accele-
ration at any given h heights is given with the well-known formula:

(2)

where =6371 km , the mean radius of Earth, and =9,80665 m/s , the value of gravitational acceleration
at the sea level near N 45 geographical altitude.
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The atmospheric model and challenges related to the drag law

The meteoroid body is flying through a planparallel atmosphere in our model. Air density is a function of the height.
In our approximation the atmosphere is chemically homogeneous. Since the gas exhibits some kind of resistance
against the moving bodies, the meteoroid will drag. This will cause a change of the velocity of the moving body,
which can be calculated by introducing the related “drag force”. Under general conditions, it can be written as:

(3)

This scalar equation is seemingly very simple. As it is well known, the minus sign represents that this force is
always reacting opposite direction to the temporary direction of the moving body, while the rel index remembers us
that the force is proportional with the “relative speed” of the body, i.e. relative to the surrounding medium. In a real
atmosphere we have to have at least a realistic estimations about the wind speeds at different heights. There are
some public databases containing some information about this, at a rough time-, and spatial distribution. ra is the
density of the air at the given point, = (h) , which is a very important function in our problem. One can take it
from real measurements (and interpolating between the known points), or one can use some one-dimensional or
two-dimensional approximating calculation. The most generally used formula is the so-called “barometric approxi-
mation”, which is nevertheless running far from the real in-situ measurements made by using high-altitude
balloons:

(4)

While the different models and interpolated
real measurements exhibit minor discrepancy
from each others at low or very high altitudes,
but at medium heights (between 20-80 km,
which interval is the most important for meteor
flight) they exhibit large differences. As it can
be seen on , only the International
Standard Atmosphere (1975) is representing
well enough the real measurements. The plots
referred as ECMWF and WMO showing real
data valid at the date of Easter Bolide 2015,
while “Stratolab-8” data were delivered by our
own balloon experiment over Hungary in 2017.
The preliminary result shown in this poster
were carried by using a one-dimensional power-formula atmospheric model (since the starting height of all
studied cases remained below 33 km, thus the mentioned formula was an acceptable simplification).

The problem of the factor (the so-called “drag coefficient”) in formula (3) introduces much larger uncertainty.
Although one can find some efforts for theoretical derivation of its value, but most generally its tabulated values
are based on laboratory experiments. In many previous dark flight calculations one can find the very simple
substitution for as a constant value around 0,4-0,5 (considering spherical or conical meteoroid body, since is
depending on the form of the moving body, why it is often cited as “form factor”). However, it is well-known nowa-
days, that has a strong dependence on the relative speed and on the Reynolds number (which is characterizing
the motion in the given medium). Some authors apply a simple dependency on the Mach number (and what
is also a problem: on rather narrow interval) on the Reynolds-number. In the reality: depends on both factors.
During the dark flight, meteoroid motion can exhibit big changes in the Mach- and Reynolds numbers (see a
concrete example of the 2015 Easter Bolid on , below). formulae are from Vinnikov et al. 2016.
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Effects of winds and some initial parameters

It is and interesting question, what is the effect of some initial parameters, and the real winds on
the final place of the touchdown? For this, we show one of our results: the dark flight path in x-z
plane, for wide interval of initial velocity, including the real (see ). All other data are
referring to the Easter Bolid, as it were a 10 cm sized spherical body. What is very
interesting: let us compared the
two brown-colored lines! The left
S-shaped one shows the path
of the slowest piece, with winds,
while the other, parabolic one is
the same initial speed, but with-
out winds. The effect of the atmo-
spheric winds caused about 800
m difference in the coordinate
of the falling site.
The effect of the different masses
on the falling site is shown on the

, below. In this case we
present the final results in x-y
plane, converted to geographical
coordinates.
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Abstract:

As an extension of our previous meteor atmospheric trajectory calculator code, a new dark flight integrator has been developed by us. Hereby we discuss the accepted atmosphere model, and the relevance of the wide-range
behaviour of the drag coefficient. As trivial test, we compare our result with the analytic solution of freefall and step by step go to the more realistic cases. The first real application we made was the re-calculation of the so-called
„Easter bolide” flown over Hungary on April 06, 2015, 17:31:01 UTC. The thrown field has been derived for different sized stone pieces, and the probable effect of disintegration is also considered by Monte Carlo simulation of
wide range of the characteristic speed of “blow up”. There was only one mini-expedition to the site for trying to recover some pieces – without success yet. The work will be continued.
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